3.4.20 \(\int \frac {\sec (x)}{(a+b \sin ^2(x))^2} \, dx\) [320]

3.4.20.1 Optimal result
3.4.20.2 Mathematica [A] (verified)
3.4.20.3 Rubi [A] (verified)
3.4.20.4 Maple [A] (verified)
3.4.20.5 Fricas [B] (verification not implemented)
3.4.20.6 Sympy [F]
3.4.20.7 Maxima [A] (verification not implemented)
3.4.20.8 Giac [A] (verification not implemented)
3.4.20.9 Mupad [B] (verification not implemented)

3.4.20.1 Optimal result

Integrand size = 13, antiderivative size = 73 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\frac {\sqrt {b} (3 a+b) \arctan \left (\frac {\sqrt {b} \sin (x)}{\sqrt {a}}\right )}{2 a^{3/2} (a+b)^2}+\frac {\text {arctanh}(\sin (x))}{(a+b)^2}+\frac {b \sin (x)}{2 a (a+b) \left (a+b \sin ^2(x)\right )} \]

output
arctanh(sin(x))/(a+b)^2+1/2*b*sin(x)/a/(a+b)/(a+b*sin(x)^2)+1/2*(3*a+b)*ar 
ctan(sin(x)*b^(1/2)/a^(1/2))*b^(1/2)/a^(3/2)/(a+b)^2
 
3.4.20.2 Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.78 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\frac {-\frac {\sqrt {b} (3 a+b) \arctan \left (\frac {\sqrt {a} \csc (x)}{\sqrt {b}}\right )}{a^{3/2}}+\frac {\sqrt {b} (3 a+b) \arctan \left (\frac {\sqrt {b} \sin (x)}{\sqrt {a}}\right )}{a^{3/2}}+4 \left (-\log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+\log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )+\frac {b (a+b) \sin (x)}{a (2 a+b-b \cos (2 x))}\right )}{4 (a+b)^2} \]

input
Integrate[Sec[x]/(a + b*Sin[x]^2)^2,x]
 
output
(-((Sqrt[b]*(3*a + b)*ArcTan[(Sqrt[a]*Csc[x])/Sqrt[b]])/a^(3/2)) + (Sqrt[b 
]*(3*a + b)*ArcTan[(Sqrt[b]*Sin[x])/Sqrt[a]])/a^(3/2) + 4*(-Log[Cos[x/2] - 
 Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] + (b*(a + b)*Sin[x])/(a*(2*a + b - b 
*Cos[2*x]))))/(4*(a + b)^2)
 
3.4.20.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.18, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {3042, 3669, 316, 397, 218, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (x) \left (a+b \sin (x)^2\right )^2}dx\)

\(\Big \downarrow \) 3669

\(\displaystyle \int \frac {1}{\left (1-\sin ^2(x)\right ) \left (a+b \sin ^2(x)\right )^2}d\sin (x)\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {b \sin (x)}{2 a (a+b) \left (a+b \sin ^2(x)\right )}-\frac {\int \frac {b \sin ^2(x)+b-2 (a+b)}{\left (1-\sin ^2(x)\right ) \left (b \sin ^2(x)+a\right )}d\sin (x)}{2 a (a+b)}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {b \sin (x)}{2 a (a+b) \left (a+b \sin ^2(x)\right )}-\frac {-\frac {2 a \int \frac {1}{1-\sin ^2(x)}d\sin (x)}{a+b}-\frac {b (3 a+b) \int \frac {1}{b \sin ^2(x)+a}d\sin (x)}{a+b}}{2 a (a+b)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {b \sin (x)}{2 a (a+b) \left (a+b \sin ^2(x)\right )}-\frac {-\frac {2 a \int \frac {1}{1-\sin ^2(x)}d\sin (x)}{a+b}-\frac {\sqrt {b} (3 a+b) \arctan \left (\frac {\sqrt {b} \sin (x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{2 a (a+b)}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {b \sin (x)}{2 a (a+b) \left (a+b \sin ^2(x)\right )}-\frac {-\frac {\sqrt {b} (3 a+b) \arctan \left (\frac {\sqrt {b} \sin (x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}-\frac {2 a \text {arctanh}(\sin (x))}{a+b}}{2 a (a+b)}\)

input
Int[Sec[x]/(a + b*Sin[x]^2)^2,x]
 
output
-1/2*(-((Sqrt[b]*(3*a + b)*ArcTan[(Sqrt[b]*Sin[x])/Sqrt[a]])/(Sqrt[a]*(a + 
 b))) - (2*a*ArcTanh[Sin[x]])/(a + b))/(a*(a + b)) + (b*Sin[x])/(2*a*(a + 
b)*(a + b*Sin[x]^2))
 

3.4.20.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3669
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f   S 
ubst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x] 
/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
 
3.4.20.4 Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.08

method result size
default \(\frac {\ln \left (1+\sin \left (x \right )\right )}{2 \left (a +b \right )^{2}}+\frac {b \left (\frac {\left (a +b \right ) \sin \left (x \right )}{2 a \left (a +b \left (\sin ^{2}\left (x \right )\right )\right )}+\frac {\left (3 a +b \right ) \arctan \left (\frac {b \sin \left (x \right )}{\sqrt {a b}}\right )}{2 a \sqrt {a b}}\right )}{\left (a +b \right )^{2}}-\frac {\ln \left (\sin \left (x \right )-1\right )}{2 \left (a +b \right )^{2}}\) \(79\)
risch \(\frac {i b \left ({\mathrm e}^{3 i x}-{\mathrm e}^{i x}\right )}{a \left (a +b \right ) \left (b \,{\mathrm e}^{4 i x}-4 a \,{\mathrm e}^{2 i x}-2 b \,{\mathrm e}^{2 i x}+b \right )}+\frac {\ln \left ({\mathrm e}^{i x}+i\right )}{a^{2}+2 a b +b^{2}}-\frac {\ln \left ({\mathrm e}^{i x}-i\right )}{a^{2}+2 a b +b^{2}}+\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i x}+\frac {2 i \sqrt {-a b}\, {\mathrm e}^{i x}}{b}-1\right )}{4 a \left (a +b \right )^{2}}+\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i x}+\frac {2 i \sqrt {-a b}\, {\mathrm e}^{i x}}{b}-1\right ) b}{4 a^{2} \left (a +b \right )^{2}}-\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i x}-\frac {2 i \sqrt {-a b}\, {\mathrm e}^{i x}}{b}-1\right )}{4 a \left (a +b \right )^{2}}-\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i x}-\frac {2 i \sqrt {-a b}\, {\mathrm e}^{i x}}{b}-1\right ) b}{4 a^{2} \left (a +b \right )^{2}}\) \(267\)

input
int(sec(x)/(a+b*sin(x)^2)^2,x,method=_RETURNVERBOSE)
 
output
1/2/(a+b)^2*ln(1+sin(x))+b/(a+b)^2*(1/2*(a+b)/a*sin(x)/(a+b*sin(x)^2)+1/2* 
(3*a+b)/a/(a*b)^(1/2)*arctan(b*sin(x)/(a*b)^(1/2)))-1/2/(a+b)^2*ln(sin(x)- 
1)
 
3.4.20.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 160 vs. \(2 (61) = 122\).

Time = 0.35 (sec) , antiderivative size = 354, normalized size of antiderivative = 4.85 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\left [-\frac {{\left ({\left (3 \, a b + b^{2}\right )} \cos \left (x\right )^{2} - 3 \, a^{2} - 4 \, a b - b^{2}\right )} \sqrt {-\frac {b}{a}} \log \left (-\frac {b \cos \left (x\right )^{2} - 2 \, a \sqrt {-\frac {b}{a}} \sin \left (x\right ) + a - b}{b \cos \left (x\right )^{2} - a - b}\right ) + 2 \, {\left (a b \cos \left (x\right )^{2} - a^{2} - a b\right )} \log \left (\sin \left (x\right ) + 1\right ) - 2 \, {\left (a b \cos \left (x\right )^{2} - a^{2} - a b\right )} \log \left (-\sin \left (x\right ) + 1\right ) - 2 \, {\left (a b + b^{2}\right )} \sin \left (x\right )}{4 \, {\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3} - {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} \cos \left (x\right )^{2}\right )}}, -\frac {{\left ({\left (3 \, a b + b^{2}\right )} \cos \left (x\right )^{2} - 3 \, a^{2} - 4 \, a b - b^{2}\right )} \sqrt {\frac {b}{a}} \arctan \left (\sqrt {\frac {b}{a}} \sin \left (x\right )\right ) + {\left (a b \cos \left (x\right )^{2} - a^{2} - a b\right )} \log \left (\sin \left (x\right ) + 1\right ) - {\left (a b \cos \left (x\right )^{2} - a^{2} - a b\right )} \log \left (-\sin \left (x\right ) + 1\right ) - {\left (a b + b^{2}\right )} \sin \left (x\right )}{2 \, {\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3} - {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} \cos \left (x\right )^{2}\right )}}\right ] \]

input
integrate(sec(x)/(a+b*sin(x)^2)^2,x, algorithm="fricas")
 
output
[-1/4*(((3*a*b + b^2)*cos(x)^2 - 3*a^2 - 4*a*b - b^2)*sqrt(-b/a)*log(-(b*c 
os(x)^2 - 2*a*sqrt(-b/a)*sin(x) + a - b)/(b*cos(x)^2 - a - b)) + 2*(a*b*co 
s(x)^2 - a^2 - a*b)*log(sin(x) + 1) - 2*(a*b*cos(x)^2 - a^2 - a*b)*log(-si 
n(x) + 1) - 2*(a*b + b^2)*sin(x))/(a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 - (a^ 
3*b + 2*a^2*b^2 + a*b^3)*cos(x)^2), -1/2*(((3*a*b + b^2)*cos(x)^2 - 3*a^2 
- 4*a*b - b^2)*sqrt(b/a)*arctan(sqrt(b/a)*sin(x)) + (a*b*cos(x)^2 - a^2 - 
a*b)*log(sin(x) + 1) - (a*b*cos(x)^2 - a^2 - a*b)*log(-sin(x) + 1) - (a*b 
+ b^2)*sin(x))/(a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 - (a^3*b + 2*a^2*b^2 + a 
*b^3)*cos(x)^2)]
 
3.4.20.6 Sympy [F]

\[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\int \frac {\sec {\left (x \right )}}{\left (a + b \sin ^{2}{\left (x \right )}\right )^{2}}\, dx \]

input
integrate(sec(x)/(a+b*sin(x)**2)**2,x)
 
output
Integral(sec(x)/(a + b*sin(x)**2)**2, x)
 
3.4.20.7 Maxima [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.58 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\frac {b \sin \left (x\right )}{2 \, {\left (a^{3} + a^{2} b + {\left (a^{2} b + a b^{2}\right )} \sin \left (x\right )^{2}\right )}} + \frac {{\left (3 \, a b + b^{2}\right )} \arctan \left (\frac {b \sin \left (x\right )}{\sqrt {a b}}\right )}{2 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} \sqrt {a b}} + \frac {\log \left (\sin \left (x\right ) + 1\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} - \frac {\log \left (\sin \left (x\right ) - 1\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} \]

input
integrate(sec(x)/(a+b*sin(x)^2)^2,x, algorithm="maxima")
 
output
1/2*b*sin(x)/(a^3 + a^2*b + (a^2*b + a*b^2)*sin(x)^2) + 1/2*(3*a*b + b^2)* 
arctan(b*sin(x)/sqrt(a*b))/((a^3 + 2*a^2*b + a*b^2)*sqrt(a*b)) + 1/2*log(s 
in(x) + 1)/(a^2 + 2*a*b + b^2) - 1/2*log(sin(x) - 1)/(a^2 + 2*a*b + b^2)
 
3.4.20.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.49 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\frac {{\left (3 \, a b + b^{2}\right )} \arctan \left (\frac {b \sin \left (x\right )}{\sqrt {a b}}\right )}{2 \, {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} \sqrt {a b}} + \frac {\log \left (\sin \left (x\right ) + 1\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} - \frac {\log \left (-\sin \left (x\right ) + 1\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} + \frac {b \sin \left (x\right )}{2 \, {\left (b \sin \left (x\right )^{2} + a\right )} {\left (a^{2} + a b\right )}} \]

input
integrate(sec(x)/(a+b*sin(x)^2)^2,x, algorithm="giac")
 
output
1/2*(3*a*b + b^2)*arctan(b*sin(x)/sqrt(a*b))/((a^3 + 2*a^2*b + a*b^2)*sqrt 
(a*b)) + 1/2*log(sin(x) + 1)/(a^2 + 2*a*b + b^2) - 1/2*log(-sin(x) + 1)/(a 
^2 + 2*a*b + b^2) + 1/2*b*sin(x)/((b*sin(x)^2 + a)*(a^2 + a*b))
 
3.4.20.9 Mupad [B] (verification not implemented)

Time = 14.92 (sec) , antiderivative size = 2213, normalized size of antiderivative = 30.32 \[ \int \frac {\sec (x)}{\left (a+b \sin ^2(x)\right )^2} \, dx=\text {Too large to display} \]

input
int(1/(cos(x)*(a + b*sin(x)^2)^2),x)
 
output
(b*sin(x))/(2*a*(a + b)*(a + b*sin(x)^2)) - (atan((((3*a + b)*(-a^3*b)^(1/ 
2)*((sin(x)*(6*a*b^4 + b^5 + 13*a^2*b^3))/(2*(2*a^3*b + a^4 + a^2*b^2)) + 
((3*a + b)*(-a^3*b)^(1/2)*((2*a*b^7 + 12*a^2*b^6 + 28*a^3*b^5 + 32*a^4*b^4 
 + 18*a^5*b^3 + 4*a^6*b^2)/(3*a^4*b + a^5 + a^2*b^3 + 3*a^3*b^2) - (sin(x) 
*(3*a + b)*(-a^3*b)^(1/2)*(16*a^2*b^7 + 48*a^3*b^6 + 32*a^4*b^5 - 32*a^5*b 
^4 - 48*a^6*b^3 - 16*a^7*b^2))/(8*(2*a^3*b + a^4 + a^2*b^2)*(2*a^4*b + a^5 
 + a^3*b^2))))/(4*(2*a^4*b + a^5 + a^3*b^2)))*1i)/(4*(2*a^4*b + a^5 + a^3* 
b^2)) + ((3*a + b)*(-a^3*b)^(1/2)*((sin(x)*(6*a*b^4 + b^5 + 13*a^2*b^3))/( 
2*(2*a^3*b + a^4 + a^2*b^2)) - ((3*a + b)*(-a^3*b)^(1/2)*((2*a*b^7 + 12*a^ 
2*b^6 + 28*a^3*b^5 + 32*a^4*b^4 + 18*a^5*b^3 + 4*a^6*b^2)/(3*a^4*b + a^5 + 
 a^2*b^3 + 3*a^3*b^2) + (sin(x)*(3*a + b)*(-a^3*b)^(1/2)*(16*a^2*b^7 + 48* 
a^3*b^6 + 32*a^4*b^5 - 32*a^5*b^4 - 48*a^6*b^3 - 16*a^7*b^2))/(8*(2*a^3*b 
+ a^4 + a^2*b^2)*(2*a^4*b + a^5 + a^3*b^2))))/(4*(2*a^4*b + a^5 + a^3*b^2) 
))*1i)/(4*(2*a^4*b + a^5 + a^3*b^2)))/(((3*a*b^3)/2 + b^4/2)/(3*a^4*b + a^ 
5 + a^2*b^3 + 3*a^3*b^2) + ((3*a + b)*(-a^3*b)^(1/2)*((sin(x)*(6*a*b^4 + b 
^5 + 13*a^2*b^3))/(2*(2*a^3*b + a^4 + a^2*b^2)) + ((3*a + b)*(-a^3*b)^(1/2 
)*((2*a*b^7 + 12*a^2*b^6 + 28*a^3*b^5 + 32*a^4*b^4 + 18*a^5*b^3 + 4*a^6*b^ 
2)/(3*a^4*b + a^5 + a^2*b^3 + 3*a^3*b^2) - (sin(x)*(3*a + b)*(-a^3*b)^(1/2 
)*(16*a^2*b^7 + 48*a^3*b^6 + 32*a^4*b^5 - 32*a^5*b^4 - 48*a^6*b^3 - 16*a^7 
*b^2))/(8*(2*a^3*b + a^4 + a^2*b^2)*(2*a^4*b + a^5 + a^3*b^2))))/(4*(2*...